BRIKS ACADEMY

TIME : 3 Hours 15 Minutes
Instructions : 1. The question paper has five parts namely A, B, C, D and E. Answer all the Parts.
2. Part A has 15 multiple choice questions, 5 fill in the blank questions

PART -A

I. Answer all the multiple choice questions:

$$
15 \times 1=15
$$

1. Write $X=\{1,4,9,16,25, \ldots\}$ in set builder form.
a) $X=\{x: x$ is a set of prime numbers $\}$
b) $X=\{x: x$ is a set of whole numbers $\}$
c) $X=\{x: x$ is a set of natural numbers $\}$
d) $X=\{x: x$ is a set of square numbers $\}$
2. If $f(x)=x^{2}+2, x \in R$, then the range of $f(x)$ is
a) $[2, \infty)$
b) $(-\infty, 2]$
c) $(2, \infty)$
d) $(-\infty, 2) \cup(2, \infty)$
3. The degree measure of 2π radians is equal to
a) 225°
b) 300°
c) 420°
d) 360°
4. The conjugate of $3+4 i$ is
a) $4 i+3$
b) $-3-4 i$
c) $-3+4 i$
d) $-i+2$
5. If $4 x+3<6 x+7$, then x belongs to the interval
a) $(2, \infty)$
b) $(-2, \infty)$
c) $(-\infty, 2)$
d) $(-4, \infty)$
6. The number of ways in which 8 students can be seated in a line is
a) 5040
b) 50400
c) 40230
d) 40320
7. The number of terms in the expansion of $(a+b)^{7}$ is
a) 6
b) 5
c) 7
d) 8
8. If a sequence is defined as $a_{n}=2^{n}+7$, then the second term is
a) 11
b) 6
c) 7
d) 8
9. The equation of y - axis is
a) $x=0$
b) $y=0$
c) $x y=0$
d) $x=y$
10.Th e centre of the circle $4 x^{2}+4 y^{2}-8 x+12 y-25=0$ is
a) $(-2,3)$
b) $(1,-3 / 2)$
c) $(-4,6)$
d) $(4,-6)$
11.The length of major axis of the ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{16}=1$ is
a) 4
b) 6
c) 9
d) 8
12.The octant in which the point $(8,1,2)$ lies is
a) First
b) second
c) third
d) fourth
13.The derivative of $4 x^{2}$ with respect to x is
a) 2
b) $\frac{-3}{4}$
c) $8 x$
d) 0
14.The Median of the data $3,9,5,3,12,10,18,4,7,19,21$ is
a) 18
b) 9
C) 12
d) 10
15.The probability of drawing a diamond card from a well shuffled deck of 52 cards is
a) $\frac{1}{4}$
b) $\frac{1}{52}$
C) $\frac{1}{13}$
d) 1

II. Fill in the blanks by choosing the appropriate answer from those given in the bracket

($0,1,13,40,512$)

$$
5 \times 1=5
$$

16.If $A=\{a, b, c\}$ and $B=\{1,2,3\}$, then the subset of $A \times B$ is \qquad 17. The value of $\sin 4 \pi$ is \qquad 18. The value of 0 ! is \qquad
19. the distance between origin to $(5,12)$ is \qquad units
20. The derivative of $2 x^{2}$ at $x=10$ is \qquad

PART -B

III. Answer any six questions

$6 \times 2=12$
21. Let $A=\{1,2,3,5,6\}, B=\{2,4,6,8\}$. Find $A \cup B$ and $A \cap B$
22. List all the the subsets of the set $\{1,2,3\}$
23. Prove that $2 \sin ^{2} \frac{3 \pi}{4}+2 \cos ^{2} \frac{\pi}{4}+2 \sec ^{2} \frac{\pi}{3}=10$
24. Express $(-\sqrt{3}+\sqrt{-2})(2 \sqrt{3}-i)$ in the form of $\mathrm{a}+\mathrm{ib}$
25. If $x-i y=\sqrt{\frac{a-i b}{c-i d}}$, prove that $\left(x^{2}+y^{2}\right)^{2}=\frac{a^{2}+b^{2}}{c^{2}+d^{2}}$
26. Solve inequality $3 x-2<2 x+1$ and show the graph of the solutions on number line.
27. If $\frac{1}{6!}+\frac{1}{7!}=\frac{x}{8!}$, find x
28. Expand $(96)^{3}$, using Binomial theorem
29. Find the equation of the line passing through $(2,2 \sqrt{3})$ and inclined with the x-axis at an angle of 75°
30. Evaluate $\lim _{x \rightarrow 3} \frac{x^{4}-81}{2 x^{2}-5 x-3}$
31. A coin is tossed three times, consider the following events.
i) No head appears,
ii)Exactly one head appears,

PART - C

IV. Answer any six questions

$$
6 \times 3=18
$$

32. Let $U=\{1,2,3,4,5,6,7,8,9\}, A=\{2,4,6,8\}$, and $\mathrm{B}=\{2,3,5,7\}$ prove that $(A \cup B)^{I}=A^{I} \cap B^{I}$
33. Let $f(x)=\sqrt{x}$ and $g(x)=x$ be two real functions. Find $(f+g)(x)$,

$$
(f-g)(x), \quad(f g)(x)
$$

34. Prove that $\sin 3 x=3 \sin x-4 \sin ^{3} x$
35. Find the degree measure of the angle subtended at the centre of a circle of radius 100 cm by an arc of length 22 cm
36. Express $\frac{(3+i \sqrt{5})(3-i \sqrt{5})}{(\sqrt{3}+\sqrt{2} i)-(\sqrt{3}-i \sqrt{2})}$ in the form $a+i b$
37. The longest side of a triangle is 3 times the shortest side and the
third side is 2 cm shorter than the longest side. If the perimeter of the triangle is at least 61 cm , find the minimum length of the shortest side.
38. The sum of first three terms of a G.P. is $\frac{39}{10}$ and their product is 1 .

Find the common ratio and the terms.
39. Find the angle between the lines $\sqrt{3 x}+y=1$ and $x+\sqrt{3 y}=1$
40. Find the equation of the circle passing through the points $(4,1)$ and $(6,5)$ And whose center is on the line $x-3 y-11=0$
41. Find the equation of set of points P such that $P A^{2}+P B^{2}=2 K^{2}$,
where A and B are the points $(3,4,5)$ and $(-1,3,-7)$ respectively.
42. Find the derivative of $\cos x$ with respect to x form first principle.

PART - D

V. Answer any four questions

$4 \times 5=20$
43. Define Signum function, draw the graph . write the domain and range
44. Prove that $\tan 4 x=\frac{4 \tan x\left(1-\tan ^{2} x\right)}{1-6 \tan ^{2} x+\tan ^{4} x}$
45. In how many ways can the letters of the PERMUTATIONS be arranged if the
i) Words start with P and end with S,
ii) Vowels are all together,
iii) There are always 4 letters between P and S.
46. Prove that for every positive integer $\mathrm{n}(a+b)^{n}=$

$$
{ }^{n} c_{0} a^{n}+{ }^{n} c_{1} a^{n-1} b+{ }^{n} c_{2} a^{n-2}{ }^{n} c_{0} a^{n}+---{ }^{n} c_{n-1} a^{n} b^{n-1}+{ }^{n} c_{n} b^{n}
$$

47. Derive the formula to find the distance between the parallel lines

$$
A x+B y+c_{1}=0 \text { and } A x+B y+c_{2}=0
$$

48. Prove that geometrically $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1, \mathrm{x}$ being measured in radians
49. Calculate the mean, variance and standard deviation for the following distribution

Class	$30-40$	$40-50$	$50-60$	$60-70$	$70-80$	$80-90$	$90-100$
Frequency	3	7	12	15	8	3	2

50. Three coins are tossed once. Find the probability of getting
i) 3 heads
ii) atmost 2 heads
iii) exactly two tails
iv) no tail

Answer the following questions

51. Prove geometrically that $\cos (x+y)=\cos x \cos y-\sin x \sin y$

OR
Derive the equation of Hyperbola in the standard form $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$
52. Find the sum of the sequence $8,88,888,8888,-\cdots--$ to n terms

OR

Find the derivative of $\frac{2}{x+1}-\frac{x^{2}}{3 x-1}$ with respect to x

