SUBJECT : MATHEMATICS (35)

TIME : 3 Hours 15 Minutes
[Total questions : 52]
Max. Marks : 80

Instructions :

1. The question paper has five parts namely A, B, C, D and E. Answer all the Parts.
2. Part A has $\mathbf{1 5}$ multiple choice questions, $\mathbf{5}$ fill in the blank questions.
3. Use the graph sheet for question on linear programming problem in Part E.

PART - A

I. Answer ALL the Multiple Choice Questions:

1. Let L denote the set of all straight lines in a plane. Let a relation R be defined by $l_{1} R l_{2}$ if $\&$ only if l_{1} is perpendicular to $l_{2} \forall l_{1}, l_{2} \in L$. The R is
1) reflexive
2) symmetric
3) transitive
4) none of these
2. Let $A=\{1,2,3$ \qquad $n\} \& B=\{a, b\}$. then the number of surjective from A to B is
1) nP_{2}
2) $2^{n}-2$
3) $2^{n}-1$
4) none of these
3. The value of $\tan ^{-1}(\sqrt{3})-\cot ^{-1}(-\sqrt{3})$ is \qquad
1) π
2) $-\frac{\pi}{2}$
3) 0
4) none of these
4. For 2 X 2 matrix, $A=\left[a_{i j}\right]$ whose elements are given by $a_{i j}=\frac{(i+j)^{2}}{2}$ then A is equal to
1) $\left[\begin{array}{ll}1 & \frac{9}{2} \\ \frac{9}{2} & 8\end{array}\right]$
2) $\left[\begin{array}{ll}2 & \frac{9}{2} \\ \frac{9}{2} & 4\end{array}\right]$
3) $\left[\begin{array}{ll}2 & \frac{9}{2} \\ \frac{9}{2} & 8\end{array}\right]$
4) $\left[\begin{array}{ll}1 & \frac{9}{2} \\ \frac{9}{2} & 4\end{array}\right]$
5. In a square matrix A, sum of product of elements of a row (or) column with their corresponding cofactors is
1) 0
2) $\operatorname{det} \mathrm{A}$
3) $|\operatorname{adjA}|$
4) nothing can be said
6. The derivative of $\cos ^{-1} x$ exists in the interval
1) $[-1,1]$
2) $(-1,1)$
3) R
4) $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
7. If $y=x^{20}$ then $\frac{d^{2} y}{d x^{2}}=$
1) $20 x^{19}$
2) $20 x^{18}$
3) $380 x^{18}$
4) $380 x^{19}$
8. Local maxima of the function $g(x)=x^{3}-3 x$ is
1) 1
2) -1
3) -2
4) 2
9. $\int e^{x}\left(\tan ^{-1} x+\frac{1}{1+x^{2}}\right) d x=$
1) $\frac{e^{x}}{1+x^{2}}+c$
2) $e^{x} \tan x+c$
3) $e^{x} \tan ^{-1} x+c$
4) $\frac{\tan ^{-1} x}{1+x^{2}}+c$
10. $\int_{2}^{3} \frac{d x}{x^{2}-1}=$
1) $\log \frac{3}{2}$
2) $\log \sqrt{2}$
3) $\log (\sqrt{2}-1)$
4) $\log 2$
11.If \vec{a} is a non-zero vector of magnitude a $\& \lambda$ a non-zero scalar, then $\lambda \vec{a}$ is a unit vector if
5) $\lambda=1$
6) $\lambda=-1$
7) $a=|\lambda|$
8) $a=\frac{1}{|\lambda|}$
12.If $(\vec{a}+\vec{b}) \cdot(\vec{a}-\vec{b})=|\vec{a}|^{2}+|\vec{b}|^{2}$ and θ is angle between $\vec{a} \& \vec{b}$ then θ is equal to
9) 0
10) $\frac{\pi}{4}$
11) $\frac{\pi}{2}$
12) π
13.The direction cosines of z-axis
13) $0,1,0$
14) $0,0,1$
15) $1,0,0$
16) $0,1,1$
14. Corner points of feasible region determined by the following system of linear inequalities $2 x+y \leq 10, x+3 y \leq 15$ where $x, y \geq 0$ are $(0,0)(5,0)(3,4)(0,5)$. Let $Z=p x+q y$ where $p, q \geq 0$. Condition on $p \& q$ so that maximum of Z occurs at both $(3,4) \&(0,5)$ is
1) $p=q$
2) $p=2 q$
3) $p=3 q$
4) $q=3 p$
15.If $A \& B$ are independent events such that $P(A)=0.3 \& P(B)=0.6$ then $P(A \& \operatorname{not} B)$ is
5) 0.12
6) 0.18
7) 0.28
8) 0.42

II. Fill in the blanks by choosing the appropriate answer from those given in the bracket ()

16. Value of $\tan ^{-1}\left(\tan \left(\frac{3 \pi}{4}\right)\right)$ is \qquad .
17.If $|A|=10 \&|B|=-1$, where $A \& B$ are square matrices of same order then $|A B|=$ \qquad .
18.Number of arbitrary constants in general solution of differential equation of fourth order is
19.If $\frac{1}{\sqrt{2}}, \frac{1}{2}, k$ represents direction cosines of a line then $\mathrm{k}=$ \qquad .
20.Two cards are drawn randomly without replacement from a pack of 52 playing cards. The probability that both are black cards is \qquad .

PART - B
Answer any SIX of the following questions:
$6 \times 2=12$
21. Find the values of the $\tan ^{-1}(\sqrt{3})-\sec ^{-1}(-2)$.
22.Find the equation of the joining $(1,2)$ and $(3,6)$ using determinants.
23. Find $\frac{d y}{d x}$, if $x y+y^{2}=\tan x+y$.
24. Find the rate of change of the area of a circle with respect to its radius r when $r=3 \mathrm{~cm}$.
25. Find the maximum and minimum values, if any of the function given by $f(x)=|x|, x \in R$.
26. Evaluate $\int \frac{1-\sin x}{\cos ^{2} x} d x$
27. Evaluate $\int_{1}^{\sqrt{3}} \frac{d x}{1+x^{2}}$.
28. Find the unit vector in the direction of the vector $\vec{a}=\hat{\imath}+\hat{\jmath}+2 \hat{k}$
29. Show that the lines $\frac{x-5}{7}=\frac{y+2}{-5}=\frac{z}{1}$ and $\frac{x}{1}=\frac{y}{2}=\frac{z}{3}$ are perpendicular to each other.
30.If $P(E)=\frac{6}{11}, P(F)=\frac{5}{11}$ and $P(E \cup F)=\frac{7}{11}$, find (i) $P(E \cap F)$ (ii) $P(E \mid F)$ (iii) $P(F \mid E)$.
31. If A and B are two independent events, then the probability of occurrence of atleast one of A and B is given by $1-P\left(A^{\prime}\right) . P\left(B^{\prime}\right)$.

PART - C
Answer any SIX of the following questions:
$6 \times 3=18$
32. Show that function $f: R \rightarrow R$ defined by $f(x)=x^{4}$ is neither one -one nor onto.
33. Write $\tan ^{-1}\left(\frac{x}{\sqrt{a^{2}-x^{2}}}\right),|x|<a$ in the simplest form.
34.Express the following matrix $A=\left[\begin{array}{ccc}6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3\end{array}\right]$ as the sum of a symmetric \& skewsymmetric matrix.
35. Find $\frac{d y}{d x}$, if $\mathrm{x}^{2}+\mathrm{xy}+\mathrm{y}^{2}=100$.
36. Find $\frac{d y}{d x}$, if $x=\cos \theta-\cos 2 \theta, y=\sin \theta-\sin 2 \theta$.
37. Find the intervals in which the function $f(x)=(x+1)^{3}(x-3)^{3}$ is
a) strictly increasing
(b) strictly decreasing
38. Find $\int x \log 2 x d x$
39.Find the particular solution of the differential equation $x\left(x^{2}-1\right) \frac{d y}{d x}=1$; $y=0$ when $x=2$
40.Let \vec{a}, \vec{b}, and \vec{c} be three vectors such that $|\vec{a}|=3,|\vec{b}|=4,|\vec{c}|=5$ and each one of them being perpendicular to the sum of the other two, find $|\vec{a}+\vec{b}+\vec{c}|$.
41. Find the area of the triangle where position vectors of A, B and c are $\hat{\imath}-\hat{\jmath}+2 \hat{k}, 2 \hat{\jmath}+\hat{k}$ and $\hat{\jmath}+3 \hat{k}$ respectively.
42.A bag contains 4 red and 4 black balls, another bag contains 2 red and 6 black balls. One of the two bags is selected at random and a ball is drawn from the bag which is found to be red. Find the probability that the ball is drawn from the first bag.

PART - D
Answer any FOUR the following questions:
$4 \times 5=20$
43. Consider function $f: R \rightarrow R$ defined by $f(x)=1+x^{2}$, show that f is one-one $\&$ onto, justify your answer.
44.If $\mathrm{A}=\left[\begin{array}{ccc}1 & 1 & -1 \\ 2 & 0 & 3 \\ 3 & -1 & 2\end{array}\right] \quad \mathrm{B}=\left[\begin{array}{cc}1 & 3 \\ 0 & 2 \\ -1 & 4\end{array}\right] \quad \mathrm{C}=\left[\begin{array}{cccc}1 & 2 & 3 & -4 \\ 2 & 0 & -2 & 1\end{array}\right] \quad$ Prove that (AB)C=A(BC)..
45. Solve the system of equations $2 \mathrm{x}+3 \mathrm{y}+3 \mathrm{z}=5, \mathrm{x}-2 \mathrm{y}+\mathrm{z}=-4,3 \mathrm{x}-\mathrm{y}-2 \mathrm{z}=3$ by matrix method.
46.If $y=e^{a \cos ^{-1} x},-1 \leq x \leq 1$, show that $\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}-a^{2} y=0$.
47. Find the integral of $\sqrt{\mathrm{x}^{2}-\mathrm{a}^{2}}$ w.r.t. x and hence evaluation $\int \sqrt{\mathrm{x}^{2}-4 \mathrm{x}+6} d x$.
48. Find the area of the region bounded by the circle $x^{2}+y^{2}=16$ using integration.
49. Find the general solution of the differential equation $\frac{d y}{d x}=\frac{1+y^{2}}{1+x^{2}}$.
50. Derive the shortest distance between the two skew lines both in vector $\&$ cartesian form.

PART - E

Answer the following.

51.Prove that $\int_{0}^{2 a} f(x) d x=\left\{\begin{array}{cc}2 \int_{0}^{a} f(x) d x \quad \text { if } f(2 a-x)=f(x) \\ 0 \quad \text { if } f(2 a-x)=-f(x)\end{array}\right.$
(OR)
Solve the following problem graphically. Minimize \& maximise $z=3 x+9 y$ subject to the constraints $x+3 y \leq 60, x+y \geq 20, x \leq y, x \geq 0, y \geq 0$.
52. Find the relationship between ' a ' and ' b ' so that the function ' f ' defined by

$$
f(x)=\left\{\begin{array}{ccc}
a x+1 & \text { if } & x \leq 3 \tag{4}\\
b x+3 & \text { if } & x>3
\end{array} \text { is continuous at } x=3 .\right.
$$

(OR)

Show that the matrix $A=\left[\begin{array}{ll}2 & 3 \\ 1 & 2\end{array}\right]$ satisfies the equation $A^{2}-4 A+I=O$, where I is $2 X 2$ identity matrix \& O is 2 X 2 zero matrix. Using this equation, find A^{-1}.

