SUBJECT : MATHEMATICS (35)

TIME : 3 Hours 15 Minutes [Total questio

[Total questions : 52] Max. Marks : 80

Instructions :

1. The question paper has five parts namely A, B, C, D and E. Answer all the Parts.

2. Part A has 15 multiple choice questions, 5 fill in the blank questions.

3. Use the graph sheet for question on linear programming problem in Part E.

		PART – A	
I. Answer ALL the Multiple Choice Questions:5 x 1 = 5			
1. Let L denote the set of all straight lines in a plane. Let a relation R be defined by l_1Rl_2 if &			
only if l_1 is perpendicular to $l_2 \forall l_1, l_2 \in L$. The R is			
1) reflexive	2) symmetric	,	4) none of these
	n & B = {a,b}. then	the number of surject	
1) nP2	2) $2^n - 2$		4) none of these
3. The value of $\tan^{-1}(\sqrt{3}) - \cot^{-1}(-\sqrt{3})$ is			
1) π	2) $-\frac{\pi}{2}$	3) 0	4) none of these
4. For 2X2 matrix, $A = [a_{ij}]$ whose elements are given by $a_{ij} = \frac{(i+j)^2}{2}$ then A is equal to			
$\begin{bmatrix} 1 & \frac{9}{2} \end{bmatrix}$	$\begin{bmatrix} 2 & \frac{9}{2} \end{bmatrix}$	$\begin{bmatrix} 2 & \frac{9}{2} \end{bmatrix}$	$\begin{bmatrix} 1 & \frac{9}{2} \end{bmatrix}$
1) $\begin{vmatrix} 2 \\ 9 \\ 0 \end{vmatrix}$	2) $\begin{vmatrix} 2 & \frac{9}{2} \\ \frac{9}{2} & 4 \end{vmatrix}$	3) $\begin{bmatrix} 2 \\ 9 \\ 0 \end{bmatrix}$	4) $\begin{vmatrix} 2 \\ 9 \\ 4 \end{vmatrix}$
5. In a square matrix A, sum of product of elements of a row (or) column with their			
corresponding			
1) 0	2) detA	3) adjA	4) nothing can be said
6. The derivative of $\cos^{-1} x$ exists in the interval			
1) [-1,1]	2) (-1, 1)	3) R	4) $\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$
7. If $y = x^{20}$ then $\frac{d^2y}{dx^2} =$			
1) 20x ¹⁹	2) 20x ¹⁸	3) 380 <i>x</i> ¹⁸	4) 380 <i>x</i> ¹⁹
8. Local maxima of the function $g(x) = x^3 - 3x$ is			
1) 1	2) –1	3) –2	4) 2
9. $\int e^x \left(\tan^{-1} x + \frac{1}{1+x^2} \right) dx =$			
1) $\frac{e^x}{1+x^2} + c$	2) $e^x tanx + c$	3) $e^x \tan^{-1} x + c$	4) $\frac{\tan^{-1}x}{1+x^2} + c$
$10.\int_{2}^{3} \frac{dx}{x^{2}-1} =$			114
1) $\log \frac{3}{2}$	2) $log\sqrt{2}$	3) $\log(\sqrt{2}-1)$	4) <i>log</i> 2
11.If \vec{a} is a non-zero vector of magnitude a & λ a non-zero scalar, then $\lambda \vec{a}$ is a unit vector if			
1) λ=1	2) λ= -1	3) a = λ	
12.If $(\vec{a} + \vec{b}) \cdot (\vec{a} - \vec{b}) = \vec{a} ^2 + \vec{b} ^2$ and θ is angle between $\vec{a} \ll \vec{b}$ then θ is equal to			
1) 0	2) $\frac{\pi}{4}$	3) $\frac{\pi}{2}$	4) <i>π</i>
13.The direction cosines of z-axis			

1) 0.1.02) 0.0.13) 1,0,0 4) 0, 1, 114.Corner points of feasible region determined by the following system of linear inequalities $2x+y \le 10$, $x+3y \le 15$ where x, $y \ge 0$ are (0,0) (5,0) (3,4) (0,5). Let Z = px+qy where p, $q \ge 0$. Condition on p & q so that maximum of Z occurs at both (3,4) & (0,5) is 1) p = q2) p = 2q3) p = 3q4) q = 3p15.If A & B are independent events such that P(A)=0.3 & P(B)=0.6 then P(A & notB) is 3) 0.28 4) 0.42 1) 0.122) 0.18

II. Fill in the blanks by choosing the appropriate answer from those given in the bracket ()

16.Value of $\tan^{-1}\left(\tan\left(\frac{3\pi}{4}\right)\right)$ is _____.

17.If |A|=10 & |B|=-1, where A & B are square matrices of same order then |AB| =____. 18.Number of arbitrary constants in general solution of differential equation of fourth order is

19. If $\frac{1}{\sqrt{2}}$, $\frac{1}{2}$, *k* represents direction cosines of a line then k= _____.

20.Two cards are drawn randomly without replacement from a pack of 52 playing cards. The probability that both are black cards is _____.

PART – B

Answer any SIX of the following questions:

- 21. Find the values of the $tan^{-1}(\sqrt{3}) sec^{-1}(-2)$.
- 22. Find the equation of the joining (1, 2) and (3, 6) using determinants.
- 23.Find $\frac{dy}{dx}$, if $xy + y^2 = \tan x + y$.
- 24. Find the rate of change of the area of a circle with respect to its radius r when r=3cm.
- 25. Find the maximum and minimum values, if any of the function given by $f(x) = |x|, x \in \mathbb{R}$.

26.Evaluate $\int_{1}^{1-\sin x} dx$ 27.Evaluate $\int_{1}^{\sqrt{3}} \frac{dx}{1+x^2}$.

28.Find the unit vector in the direction of the vector $\vec{a} = \hat{i} + \hat{j} + 2\hat{k}$

- 29. Show that the lines $\frac{x-5}{7} = \frac{y+2}{-5} = \frac{z}{1}$ and $\frac{x}{1} = \frac{y}{2} = \frac{z}{3}$ are perpendicular to each other.
- 30. If $P(E) = \frac{6}{11}$, $P(F) = \frac{5}{11}$ and $P(E \cup F) = \frac{7}{11}$, find (i) $P(E \cap F)$ (ii) P(E|F) (iii) P(F|E).
- **31.** If A and B are two independent events, then the probability of occurrence of atleast one of A and B is given by 1 P(A'). P(B').

PART - C

Answer any SIX of the following questions:

32. Show that function $f : R \to R$ defined by $f(x) = x^4$ is neither one -one nor onto.

33.Write
$$tan^{-1}\left(\frac{x}{\sqrt{a^2-x^2}}\right)$$
, $|x| < a$ in the simplest form.

34.Express the following matrix $A = \begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$ as the sum of a symmetric & skew-

symmetric matrix.

- 35.Find $\frac{dy}{dx}$, if x²+xy+y² = 100.
- 36. Find $\frac{dy}{dx}$, if $x = \cos \theta \cos 2\theta$, $y = \sin \theta \sin 2\theta$.
- 37.Find the intervals in which the function $f(x) = (x + 1)^3(x 3)^3$ is

a) strictly increasing (b) strictly decreasing

38.Find $\int x \log 2x \, dx$

39. Find the particular solution of the differential equation $x(x^2 - 1) \frac{dy}{dx} = 1$; y = 0 when x = 2

6 x 3 = 18

6 x 2 = 12

 $3 \ge 1 = 3$

- 40.Let \vec{a} , \vec{b} , and \vec{c} be three vectors such that $|\vec{a}| = 3$, $|\vec{b}| = 4$, $|\vec{c}| = 5$ and each one of them being perpendicular to the sum of the other two, find $|\vec{a} + \vec{b} + \vec{c}|$.
- 41. Find the area of the triangle where position vectors of A,B and c are $\hat{i} \hat{j} + 2\hat{k}$, $2\hat{j} + \hat{k}$ and $\hat{j} + 3\hat{k}$ respectively.
- **42**.A bag contains 4 red and 4 black balls, another bag contains 2 red and 6 black balls. One of the two bags is selected at random and a ball is drawn from the bag which is found to be red. Find the probability that the ball is drawn from the first bag.

PART – D

Answer any FOUR the following questions:

4 x 5 = 20

4

43.Consider function f: $R \rightarrow R$ defined by $f(x)=1+x^2$, show that f is one-one & onto, justify your answer.

44.If
$$A = \begin{bmatrix} 1 & 1 & -1 \\ 2 & 0 & 3 \\ 3 & -1 & 2 \end{bmatrix} B = \begin{bmatrix} 1 & 3 \\ 0 & 2 \\ -1 & 4 \end{bmatrix} C = \begin{bmatrix} 1 & 2 & 3 & -4 \\ 2 & 0 & -2 & 1 \end{bmatrix}$$
 Prove that (AB)C=A(BC)..

45.Solve the system of equations 2x +3y+3z=5, x-2y+z=-4, 3x-y-2z=3 by matrix method.

46. If
$$y = e^{a \cos^{-1}x}$$
, $-1 \le x \le 1$, show that $(1 - x^2) \frac{d^2y}{dx^2} - x \frac{dy}{dx} - a^2y = 0$.

47. Find the integral of $\sqrt{x^2 - a^2}$ w.r.t. x and hence evaluation $\int \sqrt{x^2 - 4x + 6} dx$.

48. Find the area of the region bounded by the circle $x^2 + y^2 = 16$ using integration.

49. Find the general solution of the differential equation $\frac{dy}{dx} = \frac{1+y^2}{1+x^2}$.

50.Derive the shortest distance between the two skew lines both in vector & cartesian form.

PART – E

Answer the following.

51.Prove that
$$\int_{0}^{2a} f(x)dx = \begin{cases} 2\int_{0}^{a} f(x)dx & \text{if } f(2a-x) = f(x) \\ 0 & \text{if } f(2a-x) = -f(x) \end{cases}$$
(OR)

Solve the following problem graphically. Minimize & maximise z = 3x + 9y subject to the constraints $x + 3y \le 60, x + y \ge 20, x \le y, x \ge 0, y \ge 0$. 52.Find the relationship between 'a' and 'b' so that the function 'f' defined by

 $f(x) = \begin{cases} ax+1 & if \quad x \le 3\\ bx+3 & if \quad x > 3 \end{cases}$ is continuous at x = 3.

(OR)

Show that the matrix $A = \begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix}$ satisfies the equation $A^2 - 4A + I = O$, where I is 2X2 identity matrix & O is 2X2 zero matrix. Using this equation, find A^{-1} .