SUBJECT : MATHEMATICS (35)

PART – A

TIME : 3 Hours 15 Minutes[Total questions : 52]Max. Marks : 80

Instructions :

1. The question paper has five parts namely A, B, C, D and E. Answer all the Parts.

2. Part A has 15 multiple choice questions, 5 fill in the blank questions.

3. Use the graph sheet for question on linear programming problem in Part E.

I. Answer ALL the Multiple Choice Questions:				5 x 1 = 5	
1.	Which of the followin transitive	at neither reflexive nor			
	1) {(1,2) (2,1) (1,1) (1	,3)}	2) $\{(1,2), (2,1)\}$		
	3) {(2,3)}		4) {(1,2) (2,1) (1,1) (2,	2)}	
2.	 Let A={1,2,3} B={4,5,6,7} & f={(1,4) (2,5) (3,6)} be a function from A to B. choose the answer 				
	1) f is one-one, onto		2) f is many-one, ont		
2	3) f is one-one but not onto		4) f is neither one-one nor onto		
3.	The range of \csc^{-1}		π	π π π	
	1) $\left(-\frac{\pi}{2},\frac{\pi}{2}\right) - \{0\}$	2) $(0,\pi) - \left\{\frac{\pi}{2}\right\}$	3) $[0,\pi] - \{\frac{\pi}{2}\}$	4) $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] - \{0\}$	
4.		ossible matrices of orde			
-	1) 27	2) 18	3) 81	4) 512	
5.	5. If A is a matrix of order 3, such that $A(adjA)=10I$, then $ adjA =$				
	1) 10	2) $\frac{1}{10}$	3) 1	4) 100	
6.	6. If $y = \sin(\log x)$, then $\frac{dy}{dx} =$				
	1) cos(logx)	2) -cos(logx)	3) $\frac{\cos(\log x)}{x}$	4) $\frac{-\cos(\log x)}{x}$	
7.	Number of discontinuity points for $f(x) = [x]$, 0 <x,3 is<="" th=""></x,3>				
-	1) 0	2) 1	3) 2	4) 4	
8.	3. The interval in which $f(x) = 2x^2 - 3x$ is increasing is				
	(4)	2) $\left(-\infty,\frac{3}{4}\right)$	3) R	4) $(0, \frac{3}{4})$	
9.	$\int \frac{x^3 - x^2 + x - 1}{x - 1} dx$ is				
	1) $x^2 + x + c$	2) $\frac{x^3}{3} + x + c$	3) $\frac{x^3}{3} - x + c$	$4) \frac{x^3}{3} + \frac{x^2}{2} + c$	
10	$10.\int x^2 e^{x^3} dx$ equals to				
	3	2) $\frac{e^{x^2}}{3} + c$	3) $\frac{e^{x^3}}{2} + c$	4) $\frac{e^{x^2}}{2} + c$	
11. If $\vec{a} = \hat{i} + \hat{j} - 2\hat{k}$ then direction cosines of \vec{a} is					
	1) $\frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}, -\frac{2}{\sqrt{6}}$	2) $\frac{1}{6}, \frac{-2}{\sqrt{6}}, \frac{1}{\sqrt{6}}$	3) $\frac{-2}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}$	4) none of these	
12. The value of λ for which the vectors $2\hat{i} - 3\hat{j} + 4\hat{k} \ll -4\hat{i} + \lambda\hat{j} - 8\hat{k}$ are collinear is					
	1) 3	2) 6	3) -3	4) -6	
13		n ratios 2, -1 , -2 then i		2 1 2	
	1) $\frac{2}{3}$, $-\frac{1}{3}$, $-\frac{2}{3}$	2) $\frac{2}{3}, \frac{1}{3}, -\frac{2}{3}$	3) $\frac{2}{3}$, $\frac{1}{3}$, $\frac{2}{3}$	4) $\frac{2}{3}$, $-\frac{1}{3}$, $\frac{2}{3}$	
14	14.Optimal value of objective function is attained at the points				
	1) on X-axis	2) on Y-axis	3) corner points	4) none of these	

15.A urn contains 10 black & 5 white balls, 2 balls are drawn one after the other without replacement. What is the probability that both drawn balls are black? 1) $\frac{3}{7}$ 2) $\frac{4}{9}$ 3) $\frac{1}{9}$ 4) $\frac{2}{21}$

II. Fill in the blanks by choosing the appropriate answer from those given in the bracket () $3 \times 1 = 3$

16.Principal value of sec⁻¹ $\left(\frac{2}{\sqrt{3}}\right)$ is _____. 17. The value of x in which $\begin{vmatrix} 2 & 3 \\ 4 & 5 \end{vmatrix} = \begin{vmatrix} x & 3 \\ 2x & 5 \end{vmatrix}$ is _____. 18.Sum of order & degree of $\left(\frac{ds}{dt}\right)^4 + 3s\frac{d^2s}{dt^2} = 0$ is _____. 19.Lines $\frac{x-1}{3} = \frac{y-2}{2p} = \frac{z-3}{2}$ & $\frac{x-1}{3p} = \frac{y-1}{1} = \frac{z-6}{5}$ are perpendicular, then p = _____. 20.If A & B are independent events with P(A)=0.3, P(B)=0.4, then P(A\cap B) is **PART - B**

Answer any SIX of the following questions:

- 21.Prove that $2\sin^{-1}\left(\frac{3}{5}\right) = \tan^{-1}\left(\frac{24}{7}\right)$.
- 22. Find the equation of the line joining A (1,3) and B (0,0) using determinants.
- 23. Find $\frac{dy}{dx}$, if $ax + by^2 = \cos y$.
- 24.The radius of a circle is increasing uniformly at the rate of 3cm/s. find the rate at which the area of the circle is increasing when the radius is 10cm.
- 25.Find the maximum and minimum values, if any of the function given by $f(x) = x^2, x \in [-2,1]$
- 26.Find $\int \frac{dx}{(x+1)(x+2)}$. 27.Evaluate $\int_0^{\frac{\pi}{2}} \left(\sin^2\left(\frac{x}{2}\right) - \cos^2\left(\frac{x}{2}\right) \right) dx$.
- **28**. Find the projection of $\vec{a} = 2\hat{i} + 3\hat{j} + 2\hat{k}$ on the vector $\vec{b} = \hat{i} + 2\hat{j} + \hat{k}$.
- 29. Find the angle between the pair of lines given by (i) $\vec{r} = 3\hat{i} + 2\hat{j} 4\hat{k} + \lambda(\hat{i} + 2\hat{j} + 2\hat{k}) \vec{r} = 5\hat{i} 2\hat{j} + \mu(3\hat{i} + 2\hat{j} + 6\hat{k})$
- 30. If $P(E) = \frac{7}{13}$, $P(F) = \frac{9}{13}$ and $P(E \cap F) = \frac{4}{13}$, evaluate P(E|F).
- 31. If A & B two events such that $P(A) = \frac{1}{4}$, $P(B) = \frac{1}{2}$ & $P(A \cap B) = \frac{1}{8}$, find P(notA & notB).

Answer any SIX of the following questions:

- **32.**Show that the relation *R* in the set *A* of all the books in a library of a college, given by $R = \{(x, y): x \text{ and } y \text{ have same number of pages}\}$ is an equivalence relation.
- 33. Write the simplest form of $tan^{-1}\left(\frac{\cos x \sin x}{\cos x + \sin x}\right)$, $0 < x < \pi$.
- 34.Express $A = \begin{bmatrix} 3 & 5 \\ 1 & -1 \end{bmatrix}$ as the sum of symmetric & skew-symmetric matrix.

35.Find
$$\frac{dy}{dy}$$
, if $x^y + y^x = 1$.

- 36. Find $\frac{dy}{dx}$, if $x = a(\cos\theta + \theta\sin\theta)$, $y = a(\sin\theta \theta\cos\theta)$.
- 37.Find the intervals in which the function $f(x) = 10 6x 2x^2$ is

a) strictly increasing b) strictly decreasing:

- **38**.Evaluate $\int x \sin^{-1} x \, dx$.
- 39. Find the particular solution of the differential equation $cos\left(\frac{dy}{dx}\right) = a \ (a \in R); \ y = 2$ when x = 0.

 $6 \ge 2 = 12$

6 x 3 = 18

40.Show that the position vector of the point P, which divides the line joining the points A

& B having position vectors $\vec{a} \& \vec{b}$ internally in the ration m:n is $\frac{m\vec{b}+n\vec{a}}{m+n}$.

41. If $\vec{a}, \vec{b}, \vec{c}$ are unit vectors such that $\vec{a} + \vec{b} + \vec{c} = \vec{0}$, then find the value of $\vec{a}.\vec{b} + \vec{b}.\vec{c} + \vec{c}.\vec{a}$.

42. A man is known to speak truth 3 out of 4 times. He throws a die and reports that it is a six. Find the probability that it is actually a six.

 $4 \ge 5 = 20$

PART – D

Answer any FOUR the following questions:

43.Let $A = R - \{3\}$ and $B = R - \{1\}$. Consider the function $f : A \to B$ defined by $f(x) = \frac{x-2}{x-3}$. Is *f* one – one onto? Justify your answer.

44.If $A = \begin{bmatrix} 1 & 2 & -3 \\ 5 & 0 & 2 \\ 1 & -1 & 1 \end{bmatrix}$, $B = \begin{bmatrix} 3 & -1 & 2 \\ 4 & 2 & 5 \\ 2 & 0 & 3 \end{bmatrix}$ & $A = \begin{bmatrix} 4 & 1 & 2 \\ 0 & 3 & 2 \\ 1 & -2 & 3 \end{bmatrix}$ then compute (A+B) & (B-C).

45. Solve the following system of linear equations by matrix method. x - y + 2z = 1, 2y - 3z = 1, 3x - 2y + 4z = 2.

46. If $y = Ae^{mx} + Be^{nx}$ show that $y_2 - (m + n)y_1 + mny = 0$.

47. Find the integral of $\sqrt{x^2 + a^2}$ w.r.t x and hence evaluate $\int \sqrt{x^2 + 4x + 6} dx$.

48. Find the area of the region bounded by the circle $x^2 + y^2 = a^2$ using integration.

49. Find the general solution of the differential equation $x \frac{dy}{dx} + y - x + x \cot x = 0$, $x \neq 0$

50.Derive the shortest distance between the two skew lines.

 $x - 2y \ge 0$

PART - E

Answer the following.

51.Prove that $\int_0^a f(x) dx = \int_0^a f(a-x) dx$ hence evaluate $\int_0^{\frac{\pi}{2}} \frac{\sin^2 x}{\cos^2 x + \sin^2 x} dx$ (OR) Minimize and maximize Z=5x+10y subject to the constraints $x + 2y \le 120$ $x + y \ge 60$,

$$x \ge 0, y \ge 0$$
 by graphical method.

52. Find the values of k so that the function f is continuous at the point x = π where

$$f(x) = \begin{cases} kx + 1 & \text{if } x \le \pi\\ \cos x & \text{if } x > \pi \end{cases}$$
(OR)

If $A = \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}$ show that $A^2 - 5A + 7I = O$, where I is 2X2 identity matrix & O is 2X2 zero matrix. Using this equation, find A^{-1} .

####