SUBJECT : MATHEMATICS (35)
TIME : 3 Hours 15 Minutes
[Total questions : 52]
Max. Marks : 80

Instructions :

1. The question paper has five parts namely A, B, C, D and E. Answer all the Parts.
2. Part A has 15 multiple choice questions, $\mathbf{5}$ fill in the blank questions.
3. Use the graph sheet for question on linear programming problem in Part \mathbf{E}.

PART - A

I. Answer ALL the Multiple Choice Questions:

1. Which of the following relation in the set $\{1,2,3\}$ is symmetric but neither reflexive nor transitive
1) $\{(1,2)(2,1)(1,1)(1,3)\}$
2) $\{(1,2)(2,1)\}$
3) $\{(2,3)\}$
4) $\{(1,2)(2,1)(1,1)(2,2)\}$
2. Let $A=\{1,2,3\} \quad B=\{4,5,6,7\} \& f=\{(1,4)(2,5)(3,6)\}$ be a function from A to B. choose the correct answer
1) fis one-one, onto
2) f is many-one, onto
3) f is one-one but not onto
4) f is neither one-one nor onto
3. The range of $\operatorname{cosec}^{-1} x$ is
1) $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)-\{0\}$
2) $(0, \pi)-\left\{\frac{\pi}{2}\right\}$
3) $[0, \pi]-\left\{\frac{\pi}{2}\right\}$
4) $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]-\{0\}$
4. The number of all possible matrices of order $3 X 3$ with each entry 0 or 1 is :
1) 27
2) 18
3) 81
4) 512
5. If A is a matrix of order 3 , such that $A(\operatorname{adjA})=10 I$, then $|\operatorname{adjA}|=$
1) 10
2) $\frac{1}{10}$
3) 1
4) 100
6. If $\mathrm{y}=\sin (\log \mathrm{x})$, then $\frac{d y}{d x}=$
1) $\cos (\log x)$
2) $-\cos (\log x)$
3) $\frac{\cos (\log x)}{x}$
4) $\frac{-\cos (\log x)}{x}$
7. Number of discontinuity points for $f(x)=[x], 0<x, 3$ is
1) 0
2) 1
3) 2
4) 4
8. The interval in which $f(x)=2 x^{2}-3 x$ is increasing is
1) $\left(\frac{3}{4}, \infty\right)$
2) $\left(-\infty, \frac{3}{4}\right)$
3) R
4) $\left(0, \frac{3}{4}\right)$
9. $\int \frac{x^{3}-x^{2}+x-1}{x-1} d x$ is
1) $x^{2}+x+c$
2) $\frac{x^{3}}{3}+x+c$
3) $\frac{x^{3}}{3}-x+c$
4) $\frac{x^{3}}{3}+\frac{x^{2}}{2}+c$
10. $\int x^{2} e^{x^{3}} d x$ equals to
1) $\frac{e^{x^{3}}}{3}+c$
2) $\frac{e^{x^{2}}}{3}+c$
3) $\frac{e^{x^{3}}}{2}+c$
4) $\frac{e^{x^{2}}}{2}+c$
11.If $\vec{a}=\hat{\imath}+\hat{\jmath}-2 \hat{k}$ then direction cosines of \vec{a} is
5) $\frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}},-\frac{2}{\sqrt{6}}$
6) $\frac{1}{6}, \frac{-2}{\sqrt{6}}, \frac{1}{\sqrt{6}}$
7) $\frac{-2}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}$
8) none of these
12. The value of λ for which the vectors $2 \hat{\imath}-3 \hat{\jmath}+4 \hat{k} \&-4 \hat{\imath}+\lambda \hat{\jmath}-8 \hat{k}$ are collinear is
1) 3
2) 6
3) -3
4) -6
13.If a line has direction ratios $2,-1,-2$ then its direction cosines
5) $\frac{2}{3},-\frac{1}{3},-\frac{2}{3}$
6) $\frac{2}{3}, \frac{1}{3},-\frac{2}{3}$
7) $\frac{2}{3}, \frac{1}{3}, \frac{2}{3}$
8) $\frac{2}{3},-\frac{1}{3}, \frac{2}{3}$
14. Optimal value of objective function is attained at the points
1) on X-axis
2) on Y-axis
3) corner points
4) none of these
15.A urn contains 10 black \& 5 white balls, 2 balls are drawn one after the other without replacement. What is the probability that both drawn balls are black?
5) $\frac{3}{7}$
6) $\frac{4}{9}$
7) $\frac{1}{9}$
8) $\frac{2}{21}$

II. Fill in the blanks by choosing the appropriate answer from those given in the bracket ()
 $3 \times 1=3$

16. Principal value of $\sec ^{-1}\left(\frac{2}{\sqrt{3}}\right)$ is \qquad -
17. The value of x in which $\left|\begin{array}{ll}2 & 3 \\ 4 & 5\end{array}\right|=\left|\begin{array}{cc}x & 3 \\ 2 x & 5\end{array}\right|$ is \qquad .
18. Sum of order $\&$ degree of $\left(\frac{d s}{d t}\right)^{4}+3 s \frac{d^{2} s}{d t^{2}}=0$ is \qquad .
19. Lines $\frac{x-1}{3}=\frac{y-2}{2 p}=\frac{z-3}{2} \& \frac{x-1}{3 p}=\frac{y-1}{1}=\frac{z-6}{5}$ are perpendicular, then $\mathrm{p}=$ \qquad .
20.If $\mathrm{A} \& \mathrm{~B}$ are independent events with $\mathrm{P}(\mathrm{A})=0.3, \mathrm{P}(\mathrm{B})=0.4$, then $\mathrm{P}(\mathrm{A} \cap \mathrm{B})$ is

PART - B

Answer any SIX of the following questions:

$6 \times 2=12$
21 . Prove that $2 \sin ^{-1}\left(\frac{3}{5}\right)=\tan ^{-1}\left(\frac{24}{7}\right)$.
22.Find the equation of the line joining $A(1,3)$ and $B(0,0)$ using determinants.
23. Find $\frac{d y}{d x}$, if $a x+b y^{2}=\cos y$.
24.The radius of a circle is increasing uniformly at the rate of $3 \mathrm{~cm} / \mathrm{s}$. find the rate at which the area of the circle is increasing when the radius is 10 cm .
25. Find the maximum and minimum values, if any of the function given by $f(x)=x^{2}, x \in$ [-2,1]
26. Find $\int \frac{d x}{(x+1)(x+2)}$.
27.Evaluate $\int_{0}^{\frac{\pi}{2}}\left(\sin ^{2}\left(\frac{x}{2}\right)-\cos ^{2}\left(\frac{x}{2}\right)\right) d x$.
28. Find the projection of $\vec{a}=2 \hat{\imath}+3 \hat{\jmath}+2 \hat{k}$ on the vector $\vec{b}=\hat{\imath}+2 \hat{\jmath}+\hat{k}$.
29. Find the angle between the pair of lines given by (i) $\vec{r}=3 \hat{\imath}+2 \hat{\jmath}-4 \hat{k}+\lambda(\hat{\imath}+2 \hat{\jmath}+2 \hat{k}) \vec{r}=$ $5 \hat{\imath}-2 \hat{\jmath}+\mu(3 \hat{\imath}+2 \hat{\jmath}+6 \hat{k})$
30.If $P(E)=\frac{7}{13}, P(F)=\frac{9}{13}$ and $P(E \cap F)=\frac{4}{13}$, evaluate $P(E \mid F)$.
31.If A \& B two events such that $P(A)=\frac{1}{4}, P(B)=\frac{1}{2} \& P(A \cap B)=\frac{1}{8}$, find $P(n o t A \& n o t B)$.

PART - C

Answer any SIX of the following questions:

32. Show that the relation R in the set A of all the books in a library of a college, given by $R=\{(x, y): x$ and y have same number of pages $\}$ is an equivalence relation.
33. Write the simplest form of $\tan ^{-1}\left(\frac{\cos x-\sin x}{\cos x+\sin x}\right), 0<x<\pi$.
34. Express $A=\left[\begin{array}{cc}3 & 5 \\ 1 & -1\end{array}\right]$ as the sum of symmetric $\&$ skew-symmetric matrix.
35. Find $\frac{d y}{d x}$, if $x^{y}+y^{x}=1$.
36. Find $\frac{d y}{d x}$, if $x=a(\cos \theta+\theta \sin \theta), y=a(\sin \theta-\theta \cos \theta)$.
37. Find the intervals in which the function $f(x)=10-6 x-2 x^{2}$ is
a) strictly increasing
b) strictly decreasing:
38. Evaluate $\int x \sin ^{-1} x d x$.
39. Find the particular solution of the differential equation $\cos \left(\frac{d y}{d x}\right)=a(a \in R) ; y=2$ when $x=0$.
40. Show that the position vector of the point P , which divides the line joining the points A \& B having position vectors $\vec{a} \& \vec{b}$ internally in the ration m :n is $\frac{m \vec{b}+n \vec{a}}{m+n}$.
41.If $\vec{a}, \vec{b}, \vec{c}$ are unit vectors such that $\vec{a}+\vec{b}+\vec{c}=\overrightarrow{0}$, then find the value of $\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}$.
42.A man is known to speak truth 3 out of 4 times. He throws a die and reports that it is a six. Find the probability that it is actually a six.

PART - D
Answer any FOUR the following questions:
$4 \times 5=20$
43.Let $A=R-\{3\}$ and $B=R-\{1\}$. Consider the function $f: A \rightarrow B$ defined by $f(x)=\frac{x-2}{x-3}$. Is f one - one onto? Justify your answer.
44.If $A=\left[\begin{array}{ccc}1 & 2 & -3 \\ 5 & 0 & 2 \\ 1 & -1 & 1\end{array}\right], B=\left[\begin{array}{ccc}3 & -1 & 2 \\ 4 & 2 & 5 \\ 2 & 0 & 3\end{array}\right] \& A=\left[\begin{array}{ccc}4 & 1 & 2 \\ 0 & 3 & 2 \\ 1 & -2 & 3\end{array}\right]$ then compute (A+B) \& (BC). Also verify that $\mathrm{A}+(\mathrm{B}-\mathrm{C})=(\mathrm{A}+\mathrm{B})-\mathrm{C}$.
45. Solve the following system of linear equations by matrix method. $x-y+2 z=1,2 y-$ $3 z=1,3 x-2 y+4 z=2$.
46.If $y=A e^{m x}+B e^{n x}$ show that $y_{2}-(m+n) y_{1}+m n y=0$.
47. Find the integral of $\sqrt{x^{2}+a^{2}}$ w.r.t x and hence evaluate $\int \sqrt{x^{2}+4 x+6} d x$.
48. Find the area of the region bounded by the circle $x^{2}+y^{2}=a^{2}$ using integration.
49. Find the general solution of the differential equation $x \frac{d y}{d x}+y-x+x \cot x=0, x \neq 0$ 50.Derive the shortest distance between the two skew lines.

PART - E

Answer the following.

51.Prove that $\int_{0}^{a} f(x) d x=\int_{0}^{a} f(a-x) d x$ hence evaluate $\int_{0}^{\frac{\pi}{2}} \frac{\sin ^{2} x}{\cos ^{2} x+\sin ^{2} x} d x$

Minimize and maximize $Z=5 x+10 y$
subject to the constraints $x+2 y \leq 120$

$$
\begin{aligned}
& x+y \geq 60 \\
& x-2 y \geq 0 \\
& x \geq 0, y \geq 0 \text { by graphical method. }
\end{aligned}
$$

52. Find the values of k so that the function f is continuous at the point $\mathrm{x}=\pi$ where

$$
f(x)=\left\{\begin{array}{cc}
k x+1 & \text { if } x \leq \pi \\
\cos x & \text { if } x>\pi
\end{array}\right.
$$

(OR)
If $A=\left[\begin{array}{cc}3 & 1 \\ -1 & 2\end{array}\right]$ show that $\mathrm{A}^{2}-5 \mathrm{~A}+7 \mathrm{I}=\mathrm{O}$, where I is 2 X 2 identity matrix \& O is 2 X 2 zero matrix. Using this equation, find A^{-1}.

